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Abstract
When working with grouped data, investigators may choose between “fixed effects” models (FE) with

specialized (e.g., cluster-robust) standard errors, or “multilevelmodels” (MLMs) employing “randomeffects.”

We review the claims given in published works regarding this choice, then clarify how these approaches

work and compare by showing that: (i) random effects employed in MLMs are simply “regularized” fixed

effects; (ii) unmodified MLMs are consequently susceptible to bias—but there is a longstanding remedy; and

(iii) the “default” MLM standard errors rely on narrow assumptions that can lead to undercoverage in many

settings. Our review of over 100 papers using MLM in political science, education, and sociology show that

these “known” concerns have been widely ignored in practice. We describe how to debias MLM’s coefficient

estimates, and provide an option to more flexibly estimate their standard errors. Most illuminating, once

MLMsare adjusted in these twoways thepoint estimateand standard error for the target coefficient are exactly

equal to those of the analogous FE model with cluster-robust standard errors. For investigators working with

observational data and who are interested only in inference on the target coefficient, either approach is

equally appropriate and preferable to uncorrected MLM.

Keywords: multilevelmodels, hierarchicalmodels, fixed effects, randomeffects, groupeddata, cluster-robust

standard errors

1 Introduction

Researchers in many applied fields encounter data structureswith observations that are grouped

or clustered in one or more ways, for example students nested in classrooms and/or schools, and

perhaps measured repeatedly over time. Such observations are referred to variably as grouped,

clustered, hierarchical,multilevel, or repeatedmeasures, and include panel, longitudinal, or time-

series cross-sectional data. In one very common context—and the primary example considered

here—investigatorshope toestimate theeffectof some“treatment,” or target covariate, that varies

at a lower level while accounting for confounding that is hoped to be fixed at the higher level.

For example, in country–year data, some countries may adopt a treatment in some years, and we

seek to account at least for country- (group-) level confounders, in the hopes that remaining, time-

varying confounding is absent or less problematic.

Multilevel data structures, however, pose complications for estimation and inference by vio-

lating the independence of observations assumed under classical inference. Although a long-

standing and ubiquitous issue, methodological practices for dealing with this non-independence

have not converged across disciplinary traditions. One tradition, o�en referred to as the “fixed

effects” approach (FE), advises investigators to account for group-level confounders by introduc-

ing group-level, freely varying, intercepts to their models. The nonindependence of observations

then complicates only variance estimation, so investigators are instructed to choose a variance

estimator that accommodates the forms of intragroupdependency assumed to exist. One popular

choice, closely examined here, is the “cluster-robust standard error” (White 1984).
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A different tradition holds that multilevel data must be analyzed with “multilevel models”

(MLMs). Thesemodels look similar to FEmodels, but include terms that are estimated as “random

effects,”meaning that the coefficients are assumed to have a distribution rather than to be fixed in

truth. In a review of 10 textbooks and 4 well-cited pedagogical articles1 as well as 109 empirical

articles employing MLMs in top education, political science, and sociology journals,2 we find

four common reasons given to employ MLM rather than FE: (1) MLMs correctly estimate standard

errors in grouped data; (2) MLMs estimate coefficientsmore efficiently and producemore accurate

predictions than do the analogous FE models; (3) MLMs allow intercepts and slopes to vary by

group, like analogous FE models; but (4) unlike those FE models, MLMs can estimate coefficients

for group-level variables (and their interactions with lower-level variables) while allowing varying

intercepts (and slopes). By contrast, particularly for fields closely alignedwith econometrics, both

long-standing (e.g., Hausman 1978) andmore recent work (e.g., Clark and Linzer 2015) emphasize

bias concerns with MLMs. In the common setting where one particular variable is the treatment,

MLM estimates can have lower variance than do FE estimates for the coefficient of interest, but are

biased when group-level confounding is present, compelling users to employ FE.3

The choice between these approaches remains a matter of debate and disciplinary tradition,

and is sometimes justifiedbasedonerroneous claims as to thesemodels’ properties. In this paper,

we seek to demystify their differences, the problems associated with them, and ultimately impor-

tant equivalences between them. First, to illuminate a key difference between the approaches, we

showthat randomeffect estimates inMLMsareprecisely equivalent toFEestimates thathavebeen

shrunken through a regularization process, that is, by penalizing larger coefficients. This explains

the principle concern with random effects: bias that emerges because these variables are not

“allowed” to adjust for confounding as intended. Because regularization reduces over-fitting, this

also demystifies why MLM’s out-of-sample outcome predictions are typically more accurate. Sec-

ond, this bias can be eliminated inmany cases by a long-standing adjustment fromMundlak 1978.

For models with group-level intercepts added as random effects (“random intercept” models),

which we focus on here, adding the group-level averages of all included variables as regressors

(or a variety of equivalent procedures such as group-wise centering) relieves the bias otherwise

induced by this regularization.We also present amore general solution formore complexmodels.

Finally, we consider variance estimation. Contrary to claimswe document, MLMs do not automat-

ically ensure appropriate standard error estimates for grouped data. Rather, the standard MLM

approach relies on strict assumptions and can have poor coverage in even simple circumstances.

We are not the first to drawmanyof these conclusions. However, our reviewof empirical papers

employingMLMs showswidespread failure to either appreciate the concerns they raise or employ

suggested solutions. Bringing these concerns together, we describe a “bias-corrected MLM” that

employs cluster-robust standard errors, which make no assumption about within-group depen-

dency and assume no between-group dependence. Remarkably, once these adjustments are

1 The textbooks are: Faraway (2016), Finch, Bolin, and Kelley (2016), Fitzmaurice, Laird, and Ware (2004), Greene (2003),
Heck, Thomas, and Tabata (2013), Luke (2004), Snijders and Bosker (2011), Hox and Roberts (2011), Gelman and Hill (2006),
Hoffman (2015). The articles are: Snijders andBerkhof (2008), Raudenbush (2009), Gelman (2006), Steenbergen and Jones
(2002).

2 American Journal of Political Science (17 articles), the American Political Science Review (13), the Journal of Politics (20),
the American Education Research Journal (28), Educational Evaluation and Policy Analysis (8), the American Journal of
Sociology (13), and the American Sociological Review (10). We decided on this selection of journals a�er asking specialists
in each field about the top journals that o�en publish papers that employ MLM. To find the articles, we searched on
“multilevel,” “multi-level,” “hierarchical,” “random effect,” “random effects,” “random-effect,” and “random-effects.” Our
political science and sociology reviews currently cover all articles dated January 2017 through December 2018, and our
education review currently covers all articles dated January 2017 through April 2019.

3 When this bias is present, the rootmean square error of MLMmay be higher than that of FE even if MLMhas lower variance,
as we demonstrate. It is also possible to construct cases wherein a MLM and FE model have equal variance. One example
is when treatment assignment is “perfectly blocked” within group, so that the estimated covariance of the treatment and
block indicators is numerically zero in every sample. In this case, FE, MLM with random intercepts, and even OLS produce
identical estimates and thus have identical efficiency. We thank Ian Lundberg for pointing this out.
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made, the resulting MLM produces coefficient and standard error estimates identical to those of

the analogous FEmodel with cluster-robust standard errors. We regard this as themost important

conclusion, since for investigators interested only in the target coefficient and its standard error, it

resolves anydebate as towhich approach ismore appropriate. Inmost cases,we thus recommend

either of these unbiased approaches over uncorrectedMLM, due to thedangers of heightenedbias

and rootmeansquareerrorwhenMLM’s strict assumptionsareviolated.The remainingdifferences

between these approaches are that MLM has better (out-of-sample) accuracy for the outcome

predictions, and allows the user to estimate coefficients that would otherwise be dropped by FE

(e.g., group-level covariates), although interpreting these coefficients can be problematic.

2 Background

2.1 Notation
We first set notation. To aid the reader, Appendix A.1 describe (i) symbols used in our notation

(Table 1) and (ii) abbreviations we use relating to models (Table 2).

Let g = 1, . . . ,G index the group. We index vectors belonging to group g with the subscript g,

for example, the outcome for all units in group g is given by the vectorYg . The ith unit in group g is

then indexed by g [i ], for example, unit i in group g has outcomeYg [i ] . This notation reminds the

reader that unit i is contained in group g. Each group g has size ng with N =
∑

G

g=1
ng . Let Xg [i ] be

the p-dimensional vector of covariates, including an intercept term,with an associated coefficient

vector β . One element of Xg [i ] in particular will be regarded as a treatment in settings described

here.Xg is the matrix of Xg [i ] for group g, and X is the matrix of Xg [i ] for the entire sample.

Xg [i ] =



1

X
(1)
g [i ]
.
.
.

X
(p−1)
g [i ]


∈R

p
, Xg =



X ⊤
g [1]
.
.
.

X ⊤
g [ng ]


∈R

ng×p , X =



X1

.

.

.

X
G


∈R

N×p
, β =



β0

β1
.
.
.

βp−1


∈R

p

Similarly, Zg [i ] is a d-dimensional vector of covariates, o�en containing a subset of the covariates

inXg [i ] , andpossibly an interceptwhichwill later function as an indicator ofmembership to group

g. For each group g, the Zg [i ] have an associated coefficient vector γg . Zg is thematrix of Zg [i ] for

group g, Z is a block diagonal matrix of the Zg , and γ stacks the set of γg into a matrix.

Zg [i ] =



Z
(0)
g [i ]
.
.
.

Z
(d−1)
g [i ]


∈R

d
, Zg =



Z ⊤
g [1]
.
.
.

Z ⊤
g [ng ]


∈R

ng×d , Z =



Z1 . . . 0
.
.
.
. . .

.

.

.

0 . . . ZG


∈R

N×Gd
,

γg =



γ0g
.
.
.

γ(d−1)g


∈R

d
, γ =



γ1
.
.
.

γG


∈R

Gd

As noted,Yg [i ] is the outcome of interest, and ǫg [i ] is its associated residual/error term. Y and ǫ

are N ×1 vectors containingYg [i ] and ǫg [i ] for the entire sample.

Yg [i ] ∈R , Yg =



Yg [1]

.

.

.

Yg [ng ]


∈R

ng , Y =



Y1

.

.

.

YG


∈R

N
, ǫg [i ] ∈R , ǫg =



ǫg [1]
.
.
.

ǫg [ng ]


∈R

ng , ǫ =



ǫ1
.
.
.

ǫG


∈R

N
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2.2 Fixed effect andmultilevel models
Varying intercepts: Group fixed effects and random intercept models. We focus mainly on uses

of FE and MLM that allow each group in the data a different intercept but no other group-varying

coefficients.4 Suppose data are generated according to the simple model, written in matrix form,

Y = Xβ +Z γ +ǫ, (1)

where Z contains only indicators for membership to each group g, that is, each Zg is a vector of

ones, meaning that only intercepts may differ between groups. While useful to write in this form

because it shows the role of Z, the model is o�en expressed as

Yg [i ] = X ⊤
g [i ]β +γg +ǫg [i ], (2)

where γg are group-specific deviations from the overall intercept in β . Although a model can

be fitted regardless of the correlation between the residuals and Xg [i ] , investigators are usually

interested inunderstanding the effect of a treatment variable (inXg [i ] ) onYg [i ] , which requires the

“conditional independence assumption,”E(ǫg [i ] | X ,Z ) = 0. This is an identification assumption

relating to the formof confounding, although it is also subject tomodel specification.We describe

the types of permitted confounding that are used to justify this assumption in Section 2.3.

The distinction between FE and MLM for the varying intercepts model in Equation (2) relates

to the assumptions they employ during estimation. Both FE and MLM regard β as “fixed,” that is,

nonrandom with no distributional assumption. However, FE and MLM diverge in their handling

of γg . In FE, the γg are regarded as fixed, like β . FE thus estimates β and γ by including indicator

variables for groupmembership (in Z) as additional regressors in anOLSof Y on X, or by equivalent

demeaning/partialing-out procedures. We refer to this as “group fixed effects” (Group-FE) here.

In practice, one group indicator and its corresponding γg must be dropped, or the intercept term

must be dropped fromXg [i ] .

MLM, by contrast, treats the γg as “random effects,” meaning that each γg is estimated under

the assumption that it may have a distribution, that is has nonzero variance rather than being a

fixedquantity. Thishas implications forestimatingbothγandβ , aswell as for constructingvariance

estimates, detailed in Section 2.4.5 Specifically, we define the “random intercept” (RI) model,

Yg [i ] = X ⊤
g [i ]β +γg +ǫg [i ], γg | X ,Z

i i d
∼ N (0,ω2) (RI)

where we also assume that ǫg [i ] |= γg ′ | X ,Z for all g ,g ′, and i. Additionally, the conditional

independence assumption is elaborated to require a multivariate-normal distribution for the

residual vectors in each group, ǫg | X ,Z
i nd
∼ N (0,Σg ) where Σg ∈ R

ng×ng is group g’s error

covariance matrix. All γg can be kept and estimated by this approach, together with an intercept

in β . It is also commonly assumed that the ǫg [i ] are spherical (i.e., Σg = σ2Ing ), althoughwe avoid

that restriction unless otherwise noted.

4 This is perhaps the most common use of MLM: In our review of empirical papers employing MLM in education, political
science, and sociology journals, MLM models solely allowing group-varying intercepts (“random intercept” models,
described momentarily) were by far the most common usage of MLM, covering at least 24 of 36 articles in education, at
least 39 of 50 in political science, and at least 21 of 23 in sociology.

5 While the terms “fixed” and “random” as defined above are in keeping with common usage in the MLM literature, their
meanings can varywidely and sometimes even conflict (see Gelman et al.2005 for examples). Randomeffect intercepts (or
later, coefficients) are also sometimes referred to as “modeled” (e.g., Gelman 2006) because they are given a probability
model (which can also bemodified, e.g., centered on a function of covariates rather than zero).
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General fixed effect andmultilevelmodels. Althoughwe focusmainly on Group-FE and RImodels

here, the claims made below pertain to FE and MLM in their more general form,

Yg [i ] = X ⊤
g [i ]β +Z ⊤

g [i ]γg +ǫg [i ], (3)

where the γg represent group-specific coefficients for the variables in Zg , whichmay now include

variables other than group indicators as above. As before, FE estimates both β and γ by OLS

regression of Y on X and Z. For identifiability, the covariates that Xg [i ] and Zg [i ] share (or that

result in perfect colinearity) are either dropped from Zg [i ] for one g, or dropped fromXg [i ] .

When instead fit with random effects in MLM, the coefficients γg are estimated with additional

distributional assumptions, specifically

Yg [i ] = X ⊤
g [i ]β +Z ⊤

g [i ]γg +ǫg [i ], γg | X ,Z
i i d
∼ N (0,Ω), (MLM)

where Ω ∈ R
d×d and we assume ǫg [i ] |= γg ′ | X ,Z for all g ,g ′, and i.6 In addition, we define

var(ǫ | X ,Z ) = Σ to be the ordered block diagonal matrix of Σg , and Ωblock = var(γ | X ,Z ) to be

the block diagonal matrix of Ω,

Σ =



Σ1 . . . 0
.
.
.
. . .

.

.

.

0 . . . ΣG


∈R

N×N
, Ωblock =



Ω . . . 0
.
.
.
. . .

.

.

.

0 . . . Ω


∈R

Gd×Gd

2.3 Identification: From nonparametric conditions to specification requirements
Let us assume there is no within-group confounding. In longitudinal settings, this is to say there

are no unobserved time-varying confounders. Such an assumption ensures non-parametric iden-

tifiability, that is, the causal effect of the treatment can be identified conditionally on group and

then averaged together as desired across groups.7

For such nonparametric identification to be sufficient for unbiased estimation, however,

would require the ability to condition on group non-parametrically (i.e., estimate the relationship

between treatment and outcome within each group separately). In most settings the investigator

is unable to do this, and so turns to modeling assumptions that instead “account for” group in

a specific model. Because of this model dependence, identification of treatment effects then

requires additional assumptions related to the specification of those models.

The traditional motive for Group-FE is an assumption that the only source of confounding is

group-level confounding that takes the linear form of Equation (2): a constant, additive shi� by

group (i.e., the γg ). The conditional independence assumption needed isE(ǫg [i ] | X ,Z ) = 0 (e.g.,

Greene 2003). The Group-FE approach is powerful precisely because including Z fully purges the

group-level intercepts,γg , from this residual, thus removing confounding. So longasother (within-

group) forms of confounding do not exist, this unbiasedly estimates β .

The central concern with RI is that even under the conditional independence assumption,

random effect estimation fails to remove this confounding. As we explain in Section 3.1, this is

because RI does not fully account for the γg , biasing the estimate of β as well. Avoiding this bias

requires additionally that the “uncorrelated random effects” assumption be true: that the γg are

6 Unless otherwise noted, we assume the γg are identically distributed with common variance Ω, although this can be
relaxed (Section 3.3).

7 In terms of directed acyclic graphs (DAGs; Pearl 2000), conditioning on group must block all backdoor paths between
the treatment and the outcome. In terms of potential outcomes, the potential outcomes at different observations within
groups (e.g., years within country) must be independent of treatment conditional on group. See Imai and Kim (2019) for a
recent discussion of uncommonly recognized ways that the no-unobserved-confounding assumption may be violated.
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uncorrelated with Xg [i ] , so that failure to account for γg does not bias estimates of β .8
,9 This is

problematic, since γg is most important to account for when it is correlated with the treatment

variable of interest in Xg [i ] and thus acts as a confounder. While this assumption, also referred

to simply as the “random effects assumption” (Bell and Jones 2015; Kim and Steiner 2019), is

well-known in principle, it remainswidely neglected in practice (see Section 3.1) despite attractive

solutions (see Section 3.2).

2.4 Parameter estimation in MLM
We begin by briefly reviewing howMLM parameters are estimated.10 Estimation proceeds in three

steps: (1) estimate Ω and Σ, (2) estimate β using the estimate of (Ω,Σ), and (3) estimate γ using

the estimate of (β ,Ω,Σ). The first two steps require the distribution of Y given X and Z. Because,

in MLM, the Z ⊤
g [i ]

γg aremean-zero given X and Z, the (Z
⊤
g [i ]

γg +ǫg [i ] ) can be treated as combined

mean-zero error terms. This allows one to formulate MLM on the sample-level as Y = Xβ + ǫ∗

where ǫ∗ = Z γ +ǫ. Then, because γ and ǫ are both normally distributed given X and Z, we have

Y | X ,Z ∼ N (Xβ ,V ) where V = var(ǫ∗ | X ,Z ) = ZΩblockZ
⊤+Σ. (4)

The likelihood is then

L(β ,Ω,Σ |Y ,X ,Z ) = p(Y | X ,Z ,β ,Ω,Σ) ∝ |V |−1/2exp

(
−
1

2
(Y −Xβ )⊤V −1(Y −Xβ )

)
. (5)

Given a choice of (Ω,Σ), which determines V, maximizing the likelihood for β would yield

β̂ (Ω,Σ) = (X ⊤V −1X )−1X ⊤V −1Y . (6)

However, estimates of Ω and Σ do not enjoy similarly simple closed solutions. Instead, they

are typically found iteratively through either unrestricted maximum likelihood estimation or

restricted maximum likelihood estimation, both using Equation (5). β can then be estimated by

plugging estimates of Σ andΩ into Equation (6). Finally, γ is estimated bymaximizing its posterior

probability given Y, X, Z, and the estimated (β ,Ω,Σ), that is,

γ̂(β ,Ω,Σ) = arg maxγ p(γ |Y ,X ,Z ,β ,Ω,Σ) = ΩblockZ
⊤V −1(Y −Xβ ). (7)

In this article,we focus solely on estimation and inference for β andγ. BecauseMLM’s estimates

of these parameters are functions of Ω and Σ, our results hold regardless of the choice between

unrestricted or restricted maximum likelihood in estimating Ω and Σ. For this reason, we refer to

arbitrary MLM estimates of the parameters as Ω̂MLM, Σ̂MLM, β̂MLM, and γ̂MLM.

Finally, treating V̂MLM as fixed, the conditional variance of β̂MLM is simply

var(β̂MLM | X ,Z ) = (X ⊤V̂ −1
MLMX )

−1X ⊤V̂ −1
MLMvar(Y | X ,Z )V̂ −1

MLMX (X
⊤V̂ −1

MLMX )
−1
, (8)

8 The presumption that γg and Xg [i ] are uncorrelated is sometimes described less as an “assumption” and instead as a
feature of a “workingmodel” or a prior belief, that is, a convenience that we employ but do not necessarily expect true, or
that becomes irrelevant as the sample size grows. However, as shown here, it is a consequential modeling decision and, in
finite samples, demonstrably leads to undesirable estimates.

9 In the more general setting where the entire “random effect contribution” is captured by Z ⊤
g [i ]

γg (i.e., Equation 3), this

implies that Z ⊤
g [i ]

γg is uncorrelated with Xg [i ] .

10 Both frequentist (maximum likelihoood) and Bayesian estimation approaches are available. The former is the most
commonly taught and employed (e.g., lme4 in R), at least for the simpler models we consider here. An excellent review
of Bayesian MLM estimation can be found in Gelman and Hill (2006).
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which is commonly simplified to (X ⊤V̂ −1
MLMX )

−1 as the standard model-based MLM variance esti-

mator, by assuming that V̂MLM is a consistent estimator of var(Y | X ,Z ).

3 Analytical insights

We now analyze three features of MLM that aid in understanding how these methods compare.

3.1 Random effects as regularization and the “incomplete conditioning” problem
The first piece shows an equivalence between the random effects employed in MLM and regular-

ization, that is, apenalized fittingapproach.Webeginby introducing the “regularized fixedeffects”

(regFE) class of models. Suppose we are interested in optimal out-of-sample generalization.

Then, instead of estimating Equation (2) by minimizing (in-sample) squared error, we minimize

the squared error plus a penalty proportional to the sum of squared γg values, known as L2 or

Tikhonov regularization:

(β̂regFE, γ̂regFE) = arg min
β ,γ

( G∑
g=1

ng∑
i=1

[Yg [i ] −X ⊤
g [i ]β −γg ]

2+λ

G∑
g=1

γ2g

)
, (9)

where λ > 0 determines the extent of regularization on γg—larger values shrink each γg toward

to 0, while smaller values yield estimated intercepts closer to Group-FE’s estimates—and may

be chosen by various means such as some form of cross-validation.11 The key result is that for a

particular choice of λ, such a regularized model is equivalent to the RI model,

Theorem3.1 (EquivalenceofRI and regFE) Let (ω̂2
RI, Σ̂RI, β̂RI, γ̂RI) be estimates from theRImodel.

If (i) Σ = σ2IN and (ii) λ = σ̂2
RI/ω̂

2
RI in Equation (9), then (β̂regFE, γ̂regFE) = (β̂RI, γ̂RI).

We omit the proof here, as Theorem 3.2 below offers a generalization. That MLM provides

“shrinkage” or “partial-pooling” estimates is very well-known (e.g., Steenbergen and Jones 2002;

Fitzmaurice, Laird, and Ware 2004; Luke 2004; Gelman 2006), and in recent texts MLM has even

been referred to as employing a “regularizing prior” (e.g., McElreath 2018). The equivalence

between regularization and holding a prior on the regularized coefficients is also well known.12

That said, because we did not find any explicit formalization of the equivalence of estimation in

MLM to regularization with a specific choice of λ in any textbooks or articles we reviewed, we fill

this gap.

We demonstrate with a simple simulation example, drawing 1,000 datasets from the following

data generating process (DGP) withG = 25 and ng = 15 each time:

Yg [i ] = β0+β1Xg [i ] +γg +ǫg [i ] where Xg [i ]
i i d
∼ N (0,1) , γg

i i d
∼ N (0,1), (10)

where λ for regFE is chosen by cross-validation and (σ̂2
RI, ω̂

2
RI) for RI by restricted maximum

likelihood.13 We see in Figure 1 that the estimates of β and γ are nearly identical. They would be

11 Cross-validation partitions the data into “folds,” using all of the folds except for one to estimate amodel, and the held-out
fold to make predictions with said model. This process is repeated, holding out each fold in turn, ultimately producing an
estimate for every observation from a model that was not trained on that observation. These predictions can be used to
approximate out-of-sample error. Here we use ten-fold cross-validation to choose the λ that minimizes this out-of-sample
error estimate.

12 Specifically, regularization with the L2 penalty as used here is equivalent to finding the maximum a posteriori (MAP)

estimates under a prior that γg | X ,Z
i i d
∼ N (0,σ2/λ). We use this connection in the proof of the equivalence between

MLM and regFE. Note that other regularizing norms could be used. For example, regularization with an L1 norm,
∑

g |γg |,
produces theMAP estimatorwhenwehold a Laplacian prior on γg , andwould have the effect of inducing sparsity, possibly
shrinking some γg to exactly zero.

13 Here, and elsewhere where it is clear from context, we refer to the variable of interest, X (1)
g [i ]

, as simply Xg [i ] to reduce

notation, neglecting that Xg [i ] may also include an intercept or other terms.
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Figure 1. (a) Boxplots of β̂1 from RI and regFE over 1,000 iterations. The dashed line indicates the true value
for β1 (i.e., β1 = 1). The estimates from each method are correlated at 0.999. (b) Example for the estimated
intercepts from the RI model ( γ̂RI) or from regFE ( γ̂regFE) in a single iteration of the simulation. The points
correspond to the coordinates (γ̂g ,RI, γ̂g ,regFE) across g, and the dashed line indicates equality. The RI and
regFE estimates have a correlation of 0.999. (c) Plot of λ from RI and regFE over 1,000 iterations. At each
iteration, λ is chosen by cross-validation for regFE, and λ = σ̂2

RI/ω̂
2
RI for RI. The dashed line indicates equality.

The λ from RI and regFE have means of 4.278 and 4.277, respectively, and are correlated at 0.910.

numerically equal if, instead of setting λ in regFE by cross-validation, we chose λ = σ̂2
RI/ω̂

2
RI as

per Theorem 3.1. However, despite the different selection procedures, we also see from Figure

1 that the λ from RI and regFE are quite similar. This is because while λ = σ̂2
RI/ω̂

2
RI in RI is not

made specifically with predictive accuracy in mind, the choice is a sensible one from a prediction

point of view. To see this, note first that the portion of Yg [i ] that is not explained by Xg [i ] is

the sum of γg and ǫg [i ] , which have variances of ω
2 and σ2, respectively. When, for example,

the γg have high variance in relation to that of ǫg [i ] , λ = σ2/ω2 will be small, which is appro-

priate since γg will be helpful in predicting Yg [i ] . The converse is true when the γg have low

variance relative to ǫg [i ] , leading to a higher effective λ and desirable shrinkage on γg to avoid

over-fitting.

More generally, consider estimating Equation (3) with the regularized regression:

(β̂regFE, γ̂regFE) = arg min
β ,γ

( G∑
g=1

ng∑
i=1

[Yg [i ] −X ⊤
g [i ]β −Z ⊤

g [i ]γg ]
2+

G∑
g=1

γ⊤g Λγg

)
,

where Λ ∈R
d×d is symetric and positive semi-definite.

(11)

Again,Λmaybe obtained by variousmeans, such as cross-validation.14 The equivalencewithMLM

is then given in Theorem 3.2.

Theorem 3.2 (General equivalence of MLM and regFE) Let (Ω̂MLM, Σ̂MLM, β̂MLM, γ̂MLM) be the

estimates from MLM. If (i) Σ = σ2IN and (ii) Λ = σ̂2
MLMΩ̂

−1
MLM in Equation (11), then (β̂regFE, γ̂regFE) =

(β̂MLM, γ̂MLM).

Proof of Theorem 3.2 is given in Appendix A.3 and proves Theorem 3.1 as a special case

with Zg [i ] = [1]. This equivalence is useful in comprehending several of MLM’s most central

advantages, and limitations. First, the equivalence to regularization immediately explains why

14 Note that the procedure in Equation (11) penalizes themagnitude of γg , as γ
⊤
g Λγg ≥ 0 because Λ is positive semi-definite.

Notealso that ifZg [i ] = [1], thenEquations (9) and (11) coincide—γg andΛ becomescalars, and the regularizationpenalty,∑G
g=1

γ⊤g Λγg , becomes equivalent to λ
∑G

g=1
γ2g from Equation (9). Equation (11), however, allows varying slopes. For

example, if Zg [i ] = [1X
(1)
g [i ]

]⊤, then γg = [γ0g γ1g ]
⊤ and the regularization penalty becomes

∑G
g=1

γ⊤g Λγg =
∑G

g=1
(λ00γ

2
0g

+

2λ01γ0g γ1g +λ11γ
2
1g
) where λ00 and λ11 make up the diagonal Λ and λ01 is its off-diagonal element.
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MLMcanproducemoreaccurate (out-of-sample)outcomepredictions thandoesFE: regularization

prevents the over-fitting that FE may allow, particularly in the case of small groups.15

Further, MLM is sometimes understood to “wisely” adapt the level of shrinkage based on group

size, but the comparison to regularization shows that such adaptation is not as sophisticated as it

may appear. WhenMLMor regFE encounters a group that appears to have a very high or lowmean

relative toothers, choosinganextremeγg woulddecrease thesumof squarederrors for thatgroup,∑ng

i=1
(Yg [i ] −X ⊤

g [i ]
β −Z ⊤

g [i ]
γg )

2. For a relatively small group, the savings in squared loss would be

smaller relative to the additional “cost” paid through the regularization penalty, γ⊤g Λγg , and so γg
will be le� relatively close to zero. By comparison, when MLM or regFE encounters a larger group,

the savings in terms of squared loss would justify the added regularization penalty, so the choice

of γg minimizing the penalized sum of squared errors will be a more extreme one. Although this

behavior appears to intelligently balance prior knowledge with allowing the data to speak, it is

reproduced simply through regularization.

Another feature of MLM that can be understood through the regularization view is its ability

to estimate coefficients for group-level variables even while including group-specific intercepts

and slopes that would have prevented model identification under OLS. This occurs for the same

reason that one can includemore coefficients than observations in a “ridge regression.” Consider

attempting to find (β̂ , γ̂) purely by OLS,

(β̂ , γ̂) = arg min
β ,γ

©«
G∑
g=1

ng∑
i=1

[Yg [i ] −X ⊤
g [i ]β −Z ⊤

g [i ]γg ]
2ª®¬

= arg min
β ,γ

������Y −
[
X Z

] [β
γ

] ������2
2
. (12)

This has nounique solution ifXg [i ] contains a group-level variable or its interactionwith a variable

in Zg [i ] , as [X Z ]⊤ [X Z ] is then singular. However, by introducing the regularization penalty into

theminimization problem, regFE essentially adds to [X Z ]⊤ [X Z ] apositive semi-definitematrix

that allows the sum of the twomatrices to be invertible.

Finally, this equivalence illuminates themain concernwith MLM: bias when the random effects

are correlated with Xg [i ] . Because the group-specific intercepts in a RI model are regularized,

they do not achieve the values that would “fully absorb” group-specific confounding, leaving

components unexplained that can instead be captured by biasing the coefficients on Xg [i ] . In

Equation (2), where we hope to condition on group to absorb group-level confounders, random

effects thus offer only “incomplete conditioning,” not fully accounting for the unobserved group-

level variables’ influence on the outcome. To illustrate, consider the following DGP:

Yg [i ] = β0+β1Xg [i ] + (W
(1)
g +W

(2)
g )+ǫg [i ]

where [W
(1)
g W

(2)
g ]⊤

i i d
∼ N (0,2I2) , Xg [i ] =W

(1)
g +N (0,1)g [i ] , ǫg [i ]

i i d
∼ N (0,σ2), (DGP1)

where Xg [i ] ∈ R is an observed observation-level variable and theW (ℓ )
g are unobserved group-

level covariates, withW
(1)
g being a confounder. While Group-FE will unbiasedly estimate β1, a

simple OLS regression of Y on X would produce a biased estimate of β1, having failed to account

forW (1)
g . RI may seemmore appealing than OLS because investigators might hope that the γg will

capture thegroup-level confounding.However, the shrinkageofγg due to treating themas random

effects yields estimated intercepts closer to zero than those obtained by Group-FE and required to

15 One well-known use of MLM, especially in political science, is “multilevel regression and post-stratification” (MRP; Park,
Gelman, and Bafumi 2004). This is an approach to small-area estimation, in which estimates for the conditional means of
small groups are attempted despite having very little data by group. Its strength in this task is derived from the ability to
partially pool information across units, that is, shrinkage of the random effect estimates. Other approaches that explicitly
engage regularization may also thus be effective in this task.
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Figure 2. Comparison of estimates of β1 from OLS, Group-FE, and RI in DGP1. Note: Results across 1000
iterations, each drawn fromDGP 1with β0 = β1 = 1. The dashed-line represents the true βℓ . Due to correlated
random effects, RI estimates are almost as biased as OLS estimates when group size is small (5). The bias is
less severe but still appreciable at a group size of 50, and RMSE remains twice that of Group-FE.

account forW (1)
g . This leaves some ofW (1)

g unabsorbed, allowing it to continue biasing β̂1 as in

the OLS model. We call this “incomplete conditioning” because the intended analytical strategy

required to estimate β unbiasedly would condition on group, but the use of RI fails to achieve this.

Figure 2 illustrates this. Define bias and root mean square error (RMSE) as,

Bias =
1

M

M∑
m=1

(β̂ (m)−β ), RMSE =

√√√
1

M

M∑
m=1

(β̂ (m)−β )2

where m indexes the number of iterations from 1 to M and β̂ (m) is the estimate from the mth

iteration. Bias is large, as expected, for OLS as it fails to account for group-level confounding

at all. RI makes almost no improvement when groups are small (ng = 5), and only a partial

improvement when the groups are quite large (ng = 50). Note that unbiasedness of RI would

require the absence of correlated random effects, that is no correlation between Xg [i ] andW
(1)
g ,

which is to say an absence of group-level confounding. Had this been the case, OLS would also

suffice, and would differ from RI only in its efficiency and how variance is estimated. By contrast,

in the presence of such correlation, Group-FE effectively eliminates confounding bias at both

group sizes. In terms of efficiency, while RI has the expected slight decrease in variance, its RMSE

remains about twice that of Group-FE at either group size due to these biases. That RI’s average

bias falls as ng rises may seem to be a cause for hope when one has a large enough dataset, and

Lockwood, McCaffrey, et al. (2007) describes the conditions under which this type of bias tends to

0 as ng → ∞ generally. However, in practice, there is no knowing if ng is large enough to ensure

negligible bias in a given case, as this depends on the correlation between the covariates and the

randomeffects.We also note thatwith group-level covariates, increasing ng maynot alleviate bias

(see Appendix A.4).

Comparison to practice. For each of the three analyses in Sections 3.1, 3.2 and 3.3, we briefly

contrast what is already known of these claims to what we find in practice. In this case, both

textbooks and pedagogical articles remark heavily on the correlated random effects assumption,

albeit not usually in terms of regularization or incomplete conditioning. Yet, this most central of

concerns regarding MLM is demonstrably neglected in empirical practice. Among the MLM-based

studies we reviewed where such bias would be at issue, only one in 24 education articles, 13 of 39

political science articles, and 10 of 19 sociology articles addressed the issue.
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Figure 3.Outcomeprediction error for debiasedRI versusGroup-FE.Note:Comparisonof testing error for the
predicted outcome (average standardized test MSE, (NE(ǫ2

g [i ]
))−1

∑
g ,i (Yg [i ] −Ŷg [i ] )

2). The RI model with

Σ = σ2IN has been debiased by including X̄g as a covariate, and shows lower testing error, especially when
groups are smaller. Results are averaged across 1000 iterations, each drawn from DGP 1. Testing data are of
the same size as the training data.

3.2 Bias-corrected MLM
The second analytical piece is that while MLM’s bias problem with correlated random effects

appears to be dire, there is a simple solution dating back to Mundlak (1978). With this fix, MLM

unbiasedly estimates coefficients for variables below the level of grouping or clustering, like FE

does, while retaining the ability to include group-level variables in the model and the supe-

rior predictive accuracy that arises from regularization/random effects. For RI, the fix requires

adding to themodel the group-levelmeans ofXg [i ] (including any interactions or other nonlinear

terms).

As a stepping stone, consider a similar approach that could be applied to OLS as a substitute

for FE. We consider again DGP 1 from Section 3.1, but suppose we estimate the followingmodel by

OLS,

Yg [i ] = β0+β1Xg [i ] +α1X̄g +ǫg [i ], (13)

where X̄g = 1
ng

∑ng

i=1
Xg [i ] . Informally, adding X̄g “soaks up” any contribution that W

(1)
g could

have made toYg [i ] that could be correlated with Xg [i ] , protecting the estimate of β1 in the same

way that FE would, and leaving an unbiased estimate of β1 under the conditional independence

assumption. Proof is given in Appendix A.5. This bias-curing effect of including X̄g in OLS can

similarly be applied to the RImodel, and alleviates RI’s bias problem,with Σ = σ2IN , in estimating

β1. We omit the proof of this result, as we prove amore general claim below. In fact, an OLSmodel

including X̄g , the Group-FE model, and the RI model including X̄g all produce exactly the same

point estimates. Despite this equivalence, the RImodel retains MLM’s greater (out-of-sample) pre-

dictive accuracy for the outcome compared to Group-FE—a benefit of the regularization imposed

on γg , as illustrated in Figure 3.

One can easily generalize this alteration to other models with varying intercepts but with

multiple covariatesor treatments: simplyadd to theRImodel thegroup-levelmeansofall included

variables, X̄g =
1
ng

∑ng

i=1
Xg [i ] , including any interactions or nonlinear transformations. If spherical

observation-level errors are assumed, the coefficient estimates from this model for lower-level

variables are exactly equal to those obtained by Group-FE. Historically, the inclusion of X̄g was

proposed by Mundlak (1978) and extended by Chamberlain (1979, 1982), and is known in some

econometrics-informed traditions as the “correlated randomeffects” (CRE) approach (Wooldridge
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2010; Schunck 2013). Although originally motivated by imposing the assumptionE(γg | Xg ,Zg ) =

X̄ ⊤
g α , we show unbiasedness without this assumption by showing its equivalence to “partialing

out” of the group-level effects, which is in turn equivalent to Group-FE. A closely related approach

is the hybridmodel of Allison (2009), which group-demeansXg [i ] in addition to including X̄g . This

model is an isomorphic variation on models that only include X̄g without demeaning, producing

the same coefficient of interest on X but altering the way in which coefficients are combined to

interpret between-group differences (see Schunck 2013).

We now turn to the more general debiasing approach for cases allowing multiple random

coefficients and not just group intercepts. We refer to this as “bias-corrected MLM” (bcMLM), and

use this label throughout the remainder of the paper to cover the special case of bias-corrected RI

as well.16 We first take the projections of the “fixed effect variables” (Xg ), excluding the intercept,

onto the random effect variables (Zg ) within each group, X̃g [i ] = Z ⊤
g [i ]

(Z ⊤
g Zg )

−1Z ⊤
g Xg .17 These

projections are then added to the regression as “fixed effect variables,”

Yg [i ] = X ⊤
g [i ]β + X̃g [i ]α +Z ⊤

g [i ]γg +ǫg [i ], γg | X ,Z
i i d
∼ N (0,Ω) (bcMLM)

where β and α are assumed fixed, and we continue to assume that ǫg | X ,Z
i nd
∼ N (0,Σg ) and

ǫg [i ] |= γg ′ |X ,Z for all g ,g ′, and i. When Σ = σ2IN , andprovided it is not overidentified (described

below), bcMLM produces estimates for β that are unbiased under the conditional independence

assumption (Appendix A.8) and identical to FE estimates (Appendix A.9).

We make two remarks on this result. First, it provides unbiasedness only when spherical

observation-level errors are assumed.18 While the choice of variance-covariance matrix for the

errors has no impact on point estimates under FE, the point estimates from MLM are sensitive to

this choice. Second, the RImodel including X̄g noted above is a special case of bcMLM: if Zg = ®1ng ,

then X̃g [i ] = [1](®1 ⊤
ng
®1ng )

−1®1 ⊤
ng
Xg = X̄ ⊤

g .

Limitations and the per-cluster regression. One limitation of bcMLM is that it can fail to eliminate

potential biases for coefficients of certain variables because including X̃g [i ] results in an overiden-

tified model. A simple example would be a RI model that includes a group-level covariate,Ug , in

Xg [i ] . The proposed alteration suggests that one includes Ūg = 1
ng

∑ng

i=1
Ug , but this is simply the

sameUg already included (see Appendix A.6 for an example). Therefore, unlessUg is independent

of the random effects and any included lower-level variables (e.g., ifUg were randomly assigned

as a group-level treatment), the estimated coefficients forUg may be biased.19

Thankfully, as long as Ug is uncorrelated with the random intercepts, its coefficient can be

unbiasedly estimated if desired by adding a “per-cluster regression” step as proposed by Bates

et al. (2014). For example, suppose we have one observation-level variable Xg [i ] and one group-

level variableUg , with coefficients β1 and β2, respectively. First, using Group-FE or bcMLM (here,

an RI model including X̄g ), unbiasedly estimate β̂1. Then remove the estimated marginal effect

of X from Y, formingY ⊥
g [i ]

= Yg [i ] − β̂1Xg [i ] . The per-cluster step is to then regress the G group-

level means ofY ⊥
g [i ]

onUg and an intercept term by OLS. We provide an example of this process in

Appendix A.12.

16 Similar suggestions have beenmade byWooldridge (2005), Snijders and Berkhof (2008), and Raudenbush (2009). Another
approach (Snijders and Bosker 2011; Wooldridge 2013), is to include in anMLM the interaction of (X̄g − X̄ ) with all variables
in Zg [i ] , where X̄ =

∑
i ,j Xg [i ] is the grand-mean of Xg [i ] . This amounts to including (X̄g − X̄ )⊤ ⊗ Zg [i ] among the Xg [i ] ,

where ⊗ is the Kronecker product. However, this is not guaranteed to debias estimates of β (see Appendix A.10 and A.11).
17 Note that this is a slight abuse of notation, as Xg contains a column for the intercept term. In practice, this should be

removed fromXg when forming these projections. We appear to keep it here in the interest of avoiding extra notation.

18 We are not aware of the general unbiasedness or consistency of bcMLMwhen Σ , σ2IN and is possibly misspecified.

19 Furthermore, if cor(X (ℓ )
g [i ]
,Ug ) , 0 for some lower-level variable X

(ℓ )
g [i ]

, the inclusion of X̄ (ℓ )
g may induce bias in the

coefficient forUg that would otherwise not be there (demonstrated in Appendix A.7).
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Another importantexampleofanover-identification limitation tobcMLMoccurswhen theslope

for X (ℓ )
g [i ]

is allowed to vary, that is, X (ℓ )
g [i ]

is included in Zg [i ] . Because bcMLM includes as extra

covariates the predictions of X (ℓ )
g [i ]

using Zg [i ] , and Zg [i ] predicts X
(ℓ )
g [i ]

perfectly, including this

“prediction” simply includes X (ℓ )
g [i ]

in the model twice. One of the X (ℓ )
g [i ]

would be dropped out of

the model, and the “prediction” of X (ℓ )
g [i ]

cannot soak up the bias from any potentially correlated

randomeffectswhen estimating βℓ . This is also true of coefficients for any cross-level interactions,

X
(ℓ )
g [i ]

Ug . Here again the per-cluster regression provides an option for users who are interested in

those coefficients, as demonstrated in Appendix A.13.20

Comparison to practice. Themain takeaway from this analysis is that bcMLM removes the bias of

MLMdue to correlationof randomeffectswith the treatment, and in sodoing, produces coefficient

estimates identical to FE (when Σ = σ2IN is assumed), while retaining MLM’s superior predictive

accuracy for the outcome and the ability to model group-level variables, which may or may not

be of interest to investigators depending on their task. Yet, among articles we reviewed where

bias due to correlated random effects would be at issue, none of 24 education articles, one in

39 political science articles, and 2 of 19 sociology articles employed bcMLM or any other suitable

debiasing approach for MLM.

3.3 Variance estimation
The third and final analytical piece is that the “default” MLM standard errors are based on narrow

assumptions that are o�en inappropriate, but this too can be remedied. A commonly citedmotive

for using MLM is the claim that it ensures appropriate standard errors for multilevel data (e.g.,

Luke 2004; Morgan and Kelly 2017; Beazer and Blake 2018; Campbell and Ronfeldt 2018; Rueda

2018; Clements et al.2019; Pardos-Prado and Xena 2019). This is only true when the sole source of

heteroskedasticity or dependency between residuals arises due to the randomeffects included by

Zg [i ] and their contributions toYg [i ] . That a default standard error exists for MLM, and is the only

choice in some so�ware, does not imply it is always an appropriate choice.

Recall from Section 2.4 that the random effects contribution, Z ⊤
g [i ]

γg , and the idiosyncratic

error, ǫg [i ] , can be thought of as a singlemean-zero error term ǫ∗
g [i ]

= Z ⊤
g [i ]

γg +ǫg [i ] in themodel

Yg [i ] = X ⊤
g [i ]

β + ǫ∗
g [i ]

. The dependency between two observations’ outcomes within the same

group, conditional on X and Z, is then

cov(Yg [i ],Yg [i ′ ] | X ,Z ) = cov(ǫ
∗
g [i ],ǫ

∗
g [i ′ ] | X ,Z ) = Z ⊤

g [i ]ΩZg [i ′ ] + cov(ǫg [i ],ǫg [i ′ ] | X ,Z ). (14)

MLM can be understood as a framework for structuring this covariance, by specifying which vari-

ables enter themodels as randomeffects (i.e., Zg [i ] ) and parameterizingΩ and Σ. In the RImodel,

with Zg [i ] = [1], the combined error, ǫ∗
g [i ]

, is γg + ǫg [i ] . Under the conditional independence

assumption and spherical errors, ǫg [i ] | X ,Z
i i d
∼ N (0,σ2), the dependence structure is

var(Yg [i ] | X ,Z ) = ω2+σ2 and cov(Yg [i ] ,Yg [i ′ ] | X ,Z ) = ω2 for i , i ′ (15)

In other words,Yg [i ] is modeled as linear in Xg [i ] with error, but instead of independent observa-

tions, there is constant covariance between observations in the same group, and this covariance

does not differ by group. This yields a compound symmetric covariance matrix for each group’s

20 Theper-cluster regressiondoes, however, require that all ng > d , and is unstablewhenanynon-intercept elements ofZg [i ]

have little variation within a group. Graham and Powell (2012), extending a closely related estimator from Chamberlain
(1992), had previously investigated the conditions under which β is identifiable in these cases despite correlated random
effect contributions, and proposes an estimator that is consistent when they hold.
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error vector, ǫ∗g =Yg −Xgβ . If Zg [i ] = [1 X
(1)
g [i ]

]⊤, then ǫ∗
g [i ]

= γ0g + γ1gX
(1)
g [i ]

+ ǫg [i ] . Maintaining

that ǫg [i ] |X ,Z
i i d
∼ N (0,σ2) and that (conditionally on X andZ)γ0g andγ1g are drawn fromN (0,ω2

0
)

and N (0,ω2
1
) with covarianceω01 yields intragroup covariances of

var(Yg [i ] | X ,Z ) = ω2
0 +2X

(1)
g [i ]

ω01+
[
X
(1)
g [i ]

]2
ω2
1 +σ2

and cov(Yg [i ],Yg [i ′ ] | X ,Z ) = ω2
0 +

[
X
(1)
g [i ]

+X
(1)
g [i ′ ]

]
ω01+X

(1)
g [i ]

X
(1)
g [i ′ ]

ω2
1 for i , i ′

(16)

With the addition of more random effect variables, the variance structure becomes more

complex. This complexity should not be equated with generality—the variance is still assumed

to be a highly prescribed function of the data. To illustrate the potential for variance estimates

with poor coverage, consider the following longitudinal DGP, where g indexes the person and

t = 1, . . . ,T indexes the time-point of the observation:

Yg [t ] = β0+β1Xg [t ] +β2Ug +Wg +ǫg [t ]

where Wg
i i d
∼ N (0,4),

Xg [t ] ∼ N (0,1) and cor(Xg [t ],Xg [t+k ] ) = (0.75)
k
,

Ug
i i d
∼ N (0,1), ǫg [i ] ∼ N (0,U 2

gσ
2) and cor(ǫg [t ],ǫg [t+k ] ) = (0.75)

k (DGP2)

Here, there is an observation-level variable Xg [t ] that is auto-correlated; a group-level variable

Ug ; and a random interceptWg . The observation-level error terms are auto-correlated aswell with

(heteroskedastic) variances that depend onUg . The correct dependence structure would be

cov(Yg [t ] ,Yg [t+k ] | X ,Z ) =U 2
gσ

2(0.75)k +4 (17)

Using the “default” variance with RI, assuming Σ = σ2IN , Figure 4 shows coverage rates for

nominal 95% confidence intervals of β1 and β2 across draws from DGP 2. Typically we would

focus interest on β1, motivated by an assumption of no within-group confounding. However, we

also show results for β2 because group-level variables were o�en of interest in the empirical

works we reviewed. The RI standard errors are consistently too small for both β1 and β2 across all

sample sizes. The undercoverage for β1worsens as the total number of time-periods (T) increases.

Coverage improves for β2 as T increases, but remains unsatisfactory even at T = 50. Similar

undercoverage of the “default” MLM standard errors for RI has been noted by Bell, Fairbrother,

and Jones (2019), Heisig, Schaeffer, and Giesecke (2017), and Jacqmin-Gadda et al. (2007).

Relaxing assumptions for MLM variance estimation. If the user has strong reason to believe errors

(conditionally on the random effect contributions) are spherical, then the default MLM stan-

dard errors just described would be appropriate. However, such justifications are rarely offered.

Fortunately, more flexible approaches can be employed in the MLM framework, relaxing this

assumption. For example, with longitudinal data, it is possible to assume an AR(1) error structure

for the ǫg [t ] , inwhich cor(ǫg [t ],ǫg [t+k ] )= ρk for ρ ∈ (−1,1). Or, onemayallowvar(ǫg [i ] |X ,Z )=σ2
g ,

where σ2
g can differ by group, to accommodate heteroskedasticity by group. One may also allow

a common unstructured Σg across g, which makes no assumptions on the intragroup covariance

and assigns a separate parameter to each cov(ǫg [i ],ǫg [i ′ ] ).21

21 Another avenue toward achieving flexibility is to allow the random effects to be heteroskedastic, that is, relaxing the
assumption that the γg have common variance, Ω. Hoffman (2015), for example, proposes directly modeling the variance
of the random effects as a function of the covariates, such as var(γg0 | X ,Z ) = exp(ν0 + ν1Ug ) where Ug is a group-level
covariate and (ν0,ν1) are parameters to be estimated.
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Using such specialized error structures when estimating standard errors may be advisable

when researchers can defend the corresponding assumptions. On the other hand, users o�en

cannot claim to know the correct variance structure based on theory alone. Fortunately, cluster-

robust standard errors (CRSE), popular in conjunction with FE, provide a useful low-assumption

alternative by asking the user only to assume independence across groups while allowing within

group covariance to be fully estimated, albeit at the cost of requiring more data.22

Note that both MLM and CRSEs operate as though we assume zero covariance of the residuals

from units in different groups, sharing the assumption

cov(Yg [i ] ,Yg ′ [i ′ ] | X ,Z ) =



E(ǫ∗

g [i ]
ǫ∗
g ′ [i ′ ]

| X ,Z ) if g = g ′

0 if g , g ′
(18)

Whatdiffers is onlyhowE(ǫ∗
g [i ]

ǫ∗
g [i ′ ]

|X ,Z ) is determined. InMLM, this covariance is parametrized

as described above (e.g., E[ǫ∗
g [i ]

ǫ∗
g [i ′ ]

| X ,Z ] = ω2 +1{i=i ′ }σ
2 in a RI model), and estimated by

plugging in the parameter estimates. By contrast CRSEs are remarkable for the lack of structure

they impose on these within-group covariances. For example, a�er estimating β̂ with an OLS of Y

on X, CRSEs would simply construct empirical covariance estimates

ÊCRSE(ǫ
∗
g [i ]ǫ

∗
g ′ [i ′ ] | X ,Z ) =



c × êg [i ] êg ′ [i ′ ] if g = g ′

0 if g , g ′
(19)

where êg [i ] =Yg [i ] −X ⊤
g [i ]

β̂ and c is a scalar finite sample correction. In other words, while MLMs

makea strict assumptionon thewithin-group covariances, CRSEs impose among theweakest pos-

sible assumptions by simply employing an empirical estimate based on fitted residuals. Appendix

A.14 provides a more detailed discussion of the CRSE structure.

Fortunately, nothing prevents MLM users from employing CRSE assumptions during variance

estimation (see also Cameron and Miller 2015), estimating variance according to

v̂arCRSE(β̂MLM) = c × (X ⊤V̂ −1
MLMX )

−1X ⊤V̂ −1
MLM



ê1ê
⊤
1

0

. . .

0 êG ê
⊤
G


V̂ −1
MLMX (X

⊤V̂ −1
MLMX )

−1 (20)

where êg =Yg −Xg β̂MLM and V is defined in Equation (4). We discuss the choice of c in Appendix

A.15.

This leads to a suprising and useful equivalance. Mirroring the equivalence between estimates

of β from bcMLM with Σ = σ2IN and FE, the CRSEs forβ from both models are also equal if both

use the same c (as we recommend in Appendix A.15). This fact, proven in Appendix A.16, may be

surprising since the point estimates of Ŷg [i ] differ between models, and thus the overall error

variance differs. This equivalence avoids debate over which method is appropriate to estimate

the coefficient and standard error on the covariate of interest, since the answers will be the same.

Figure 5 illustrates the performance of CRSE with MLM in DGP 2, in which RI with Σ = σ2IN

misspecifies the dependence structure. Confidence intervals for β1 using CRSEs fixes the under-

coverage seen above in Figure 4 using the conventional standard errors. Coverage remains poor

for β2 withG = 15, with some undercoverage remaining atG = 50.

22 We refer readers to Cameron andMiller (2015) for a detailed review of CRSEs. We take amodel-based perspective here and
show the dependence structure implied by different variance estimators, including CRSEs. For a design-based approach
to considering when clustering may be required and concerns regarding the conservative affects of clustering at too high
a level, see Abadie et al. (2017).
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Figure 4. Coverage rates under RI, assuming Σ = σ2IN in DGP 2. Note: Coverage rates for 95% nominal
confidence intervals (vertical axis) for β1 (le�) and β2 (right). Results across 1000 iterations, each drawn from
DGP 2 with β0 = β1 = β2 = 1. The dashed-line represents the target coverage rate of 0.95.
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Figure 5. Coverage rates of 95% confidence intervals from RI, OLS, and Group-FE, all with CRSE, in DGP
2. Note: Results across 1000 iterations, each drawn from DGP 2, with β0 = β1 = β2 = 1.

Guidance on CRSEs. We offer several notes regarding the appropriate use of CRSEs. First, CRSEs

assume that observations in different groups have zero covariance in their residuals. Investigators

must keep this in mind when choosing the level at which clustering is performed.23 Clustering

units that actually belong to different groups as if they are in the same group reduces the number

of clusters but does not violate the CRSE assumption. By contrast, if units that actually have

dependent residuals are labeled as if they belong to separate groups, the CRSE assumption of

no between-group dependence will be violated and the results will be unreliable. In some cases,

there may not be any choice of grouping that makes this assumption defensible, in which case

CRSEs would not be defensible either.

Second, as in any modeling problem, there is a tradeoff between the ability to relax assump-

tions and the requirement for more data. Thus while CRSEs can be a substantial improvement

over default RI model-based standard errors, they do so at the cost of demanding more data. The

convergence of the CRSEs depends on the number of groups. Cameron and Miller (2015) suggests

that 20 to 50 clusters may be needed to ensure stable estimates. Naturally, this number depends

upon many features of the data and no guidelines can be expected to be universally sufficient.

Alternatively, when investigators can arguably defend the stricter assumptions of any less flexible

23 This logic extends naturally to data with multi-way clustering (e.g., clustering by both time and country in country-year
data) by assuming arbitrary dependence between any two observations that are grouped together on any dimension, and
no dependence between observations that are not grouped on any dimension (see e.g., Cameron and Miller 2015).

Chad Hazlett and Leonard Wainstein ` Political Analysis 16

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 6
6.

10
.1

02
.1

17
, o

n 
14

 F
eb

 2
02

1 
at

 1
9:

56
:1

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

41

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2020.41


covariance structure, such as an AR(1) or a simpler heteroskedasticmodel for example, then doing

somay pay off. To this end, when the number of groups is smaller, themodel-basedMLM standard

errors may be preferable if one can justify that the assumed dependence structure is plausible.

Comparison to practice. Most textbookswe revieweddescribe alternative estimators for the vari-

ance of MLM such as auto-regressive models.24 Empirical works using MLM we reviewed showed

little attention to this issue: among articles that employed RI models to estimate a coefficient

of interest, all 24 articles in education, 29 of 39 articles in political science articles, and 14 of

21 articles in sociology used the default MLM standard errors (Σ = σ2IN ) without discussion

or justification. We surmise there are several reasons for this. The first is the misconception,

documented above, that MLM automatically produces correct standard errors for any multilevel

data structure without further consideration. Second and compounding the first, so�ware widely

used for MLM estimation does not always allow alternative variance structures besides that with

Σ = σ2I or nonconstantΩ.25 Finally, investigatorsmay reasonably worry that correctly specifying

covariance structures using theory or prior knowledge is not feasible, anddecide to instead accept

default choices. This makes the CRSE approach a particularly attractive option, at least when

groups can be defined such that between-group residual dependence is arguably ruled out.

4 Conclusions

Differentmethodological traditionshave responded to the challengesposedbygroupeddatawith

divergent solutions: FE withmodified standard errors, or MLMs with random effects. To demystify

theirproperties,weshowthat (i) randomeffects invoked inMLMscanbeunderstoodas regularized

FE, explaining MLM’s improved predictive power, ability to include group-level variables, and bias

problem; (ii) this bias can be addressed; and (iii) the “default” standard errors under MLM do not

necessarily address all concerns with intragroup dependency in multilevel data.

We thus recommend estimating coefficients with either FE or bcMLM, with the assumption of

spherical errors. In both cases, CRSEs offer a flexible approach to variance estimation, particularly

if an argument can bemade for independence across clusters. Fortunately, these two approaches

produce identical point estimates and standard errors for the coefficients they share. Hence, for

those willing to make these adjustments and focused on inference regarding a treatment coef-

ficient, the question of whether FE or MLM is “more appropriate” is irrelevant. Both approaches

sacrifice the potential efficiency gain that an uncorrected MLM would offer had its strict assump-

tions been true.26We consider this a small and acceptable price to pay to avoid the risk of bias and

higher RMSE that occurs under uncorrected MLM in the presence of correlated random effects.

Accordingly, we suggest these unbiased approaches rather than any approach that seeks to mix

estimators (e.g., Cheng, Liao, and Shi 2019) or to choose between FE (or bcMLM) and uncorrected

MLM based on some criterion. For example, we do not advocate for choosing uncorrected MLM

when thenumber of observationsper group is above some threshold: one cannot knowhowmany

observationswill beenough for thebias (andRMSE) tobecomeacceptably small, andanypotential

efficiency or accuracy gain of MLM relative to FE is diminishing in group size anyway. We similarly

do not advocate for a statistical testing approach such as Hausman (1978): if one is concerned that

24 Only Snijders and Bosker (2011) discussed CRSEs in depth. Among pedagogical articles, Cameron and Miller (2015) clearly
describe the connection between MLM standard errors and CRSE, while Heisig, Schaeffer, and Giesecke (2017) compare
coverage rates of model-based MLM standard errors and CRSEs in simulations.

25 At the time of writing, lme4 in R and VARCOMP in SPSS do not allow nonspherical observation-level errors, while nlme in
R, SAS MIXED, and MIXED in SPSS do. SAS NLMIXED also allows random effects to be heteroskedastic. Alternatively, more
general Bayesian modeling and sampling so�ware such as WinBUGS and STAN allow very flexible models.

26 bcMLMmayhaveefficiencygainsover FE, however, if one specifies adifferentmodel forΣ thatnearly enoughapproximates
the correct structure. See Appendix A.2. However, we are not aware of a proof of the general unbiasedness or consistency
of bcMLMwhen nonspherical errors are assumed but Σ is possibly misspecified.
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one of those estimates (from uncorrected random effects) is incorrect, then knowing whether the

observed difference in the estimates is statistically significant or not is of little relevance.

Although our advice regarding CRSEs is less common, our debiasing recommendations echo

Raudenbush (2009), Bell and Jones (2015), andBell, Fairbrother, and Jones (2019). It is also consis-

tentwith the “correlated randomeffects” approaches in econometrics,which employ theMundlak

(1978) solution, noted in texts including Wooldridge (2010) and Greene (2012). Nevertheless, such

advice have gone largely unheeded in political science and education, and to some degree in

sociology.27

Finally, while FE and bcMLM produce identical results for the coefficients they share, the

approaches differ in that (i) bcMLM has improved predictive (out-of-sample) accuracy for the

outcome, and (ii) bcMLM retains the ability to include group-level covariates and cross-level

interactions in the model. Whether users are interested in predictive accuracy from the same

model inwhich they are interested in estimating an unbiased effect of a key covariate is a question

of research goals, not addressed here. We also emphasize that the estimated coefficients for

group-level covariatesor cross-level interactions inbcMLMmaybedifficult to interpret. In addition

to the usual identification concerns, the bias-correction step in bcMLM applies only to coefficients

it shares with FE, and may even induce bias in those that are absent from FE. For users interested

in these coefficients, bcMLM or FE regression can be followed by the appropriate per-cluster

regression step.
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